

					Printed Page: 1 of 2 ubject Code: KEC503					
				Subject Code: KEC503					,	
Roll No:										

BTECH (SEM V) THEORY EXAMINATION 2023-24 DIGITAL SIGNAL PROCESSING

TIME: 3 HRS M.MARKS: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

<u>1. </u>	Attempt all questions in brief.	2 x 10	= 20
Q no.	Question	Marks	СО
a.	Distinguish between IIR and FIR filter.	2	1
b.	Define linear phase response of a filter.	2	1
c.	Compare bilinear transformation and Impulse invariant method of IIR filter design.	2	2
d.	Distinguish between Butterworth and Chebyshev (Type-I) filter.	2	2
e.	State the need for employing window for designing FIR filter?	2	3
f.	The most straight forward approach to filter design is to truncate the impulse response of an ideal IIR filter. Why this is usually an undesirable approach?	2	3
g.	Develop the 4-point DFT of the sequence $x(n) = \{1,1\}$.	2	4
h.	How is the FFT algorithm algorithm applied to determine inverse discreate Fourier transform?	2	4
i.	Highlight the features of a commercial digital signal processor.	2	5
j.	Explain the concept of multistage sampling rate conversion.	2	5

SECTION B

2.	Attempt any three of the following:	10x3=
	i i i i i i i i i i i i i i i i i i i	20110

≠•	Attempt any unce of the following.	IUAJ	50
a.	Determine the cascade and parallel realization for the system transfer	10	1
	function		
	$3(2z^2 + 5z + 4)$		
	$H(z) = \frac{3(2z^2 + 5z + 4)}{(2z+1)(z+2)}$		
b.	Use bilinear transformation to convert low pass filter	10	2
	1		
	$H(s) = \frac{1}{(1+1.41s+s^2)}$		
	into a high pass filter with pass band edge at 100 Hz and Fs=1 kHz.		
c.	Design a low pass FIR filter for the following specifications using	10	3
	rectangular window function. Cut-off frequency = 500 Hz; Sampling		
	frequency = 2000 Hz; Order of the filter = 10		
d.	The first five points of the 8-point DFT of a real valued sequence are	10	4
	{0.25,0.125-j0.3018,0,0.12-j0.0518,0}. Determine the remaining three		
	points.		
e.	Explain the various types of addressing modes of digital signal	10	5
	processor with suitable example.		

SECTION C

3.	Attempt	t any <i>one</i>	part of the following:	10x1=	10
	D 1'	.1 .		1.0	1

_	- •			pure or energy mg.		
	a.	Realize	the giver	n H(z) for using ladder structure.	10	1
				$2 + 8z^{-1} + 6z^{-2}$		
				$H(z) = \frac{1}{1 + 8z^{-1} + 12z^{-2}}$		

				Printed Page: 2 of 2					
				Subject Code: KEC503					
Roll No:									

BTECH (SEM V) THEORY EXAMINATION 2023-24 DIGITAL SIGNAL PROCESSING

TIME: 3 HRS M.MARKS: 100

b.	Obtain the direct form-I and direct form-II realization of a given LTI	10	1
	system: $y(n) = -0.1y(n-1) + 0.72y(n-2) + 0.7x(n) - 0.25x(n-2)$		

4.	Attempt any one part of the following:	10x1=	10
a.	Convert the analog filter with system function	10	2
	(s+0.1)		
	$H_a(s) = \frac{(s+0.1)}{(s+0.1)^2 + 9}$		
	into a digital IIR filter by means of the impulsive invariance method.		
b.	Design a Chebyshev filter for the following specification using bilinear	10	2
	transformation.		
	$0.8 \le He^{jw} \le 1$ $0 \le w \le 0.2\pi$ $ He^{jw} < 0.2$ $0.6\pi < w < \pi$		
	$ \text{He}^{\text{jw}} < 0.2$ $0.6\pi < \text{w} < \pi$		

5.	Attempt any one part of the following:	10x1=10
a.	What is Hamming Window Function? Obtain its frequency domain	10 3
	characteristics.	
b.	Design a low pass filter using Kaiser window satisfying the	10 3
	specifications given filter:	9,5
	Passband cutoff frequency $F_p = 150 \text{ Hz}$	Q
	Stopband cutoff frequency $F_s = 250 \text{ Hz}$	
	Sampling frequency $F_t = 1000 \text{ Hz}$	
	Passband attenuation $A_p = 0.1 dB$	*
	Stopband attenuation $A_s = 40 \text{ dB}$	

6.	Attempt any one part of the following:	10x1=	10
a.	Determine the DFT of the given sequence $x(n) = \{1,2,3,4,4,3,2,1\}$ using	10	4
	DIF FFT algorithm.		
b.	Find the output $y(n)$ of a filter whose impulse response is $h(n) = \{1,1,1\}$	10	4
	and input signal $x(n) = \{3,-1,0,1,3,2,0,1,2,1\}$ using overlap add method.		

7.	Attempt any one part of the following:	10x1=	10
a.	Explain the process of multirate signal processing in detail. Also, enlist	10	5
	the advantages of multirate signal processing.		
b.	Write the short note on:	10	5
	(i) Recursive Least Square Algorithm		
	(ii) (ii) Window LMS Algorithm		